Publication Date

Summer 2019

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Computer Engineering

Advisor

David C. Anastasiu

Keywords

Data Science, Machine Learning

Subject Areas

Computer engineering; Computer science

Abstract

Nearest neighbor search algorithms have been successful in finding practically useful solutions to computationally difficult problems. In the nearest neighbor search problem, the brute force approach is often more efficient than other algorithms for high-dimensional spaces. A special case exists for objects represented as sparse vectors, where algorithms take advantage of the fact that an object has a zero value for most features. In general, since exact nearest neighbor search methods suffer from the “curse of dimensionality,” many practitioners use approximate nearest neighbor search algorithms when faced with high dimensionality or large datasets. To a reasonable degree, it is known that relying on approximate nearest neighbors leads to some error in the solutions to the underlying data mining problems the neighbors are used to solve. However, no one has attempted to quantify this error or provide practitioners with guidance in choosing appropriate search methods for their task. In this thesis, we conduct several experiments on recommender systems with a goal to find the degree to which approximate nearest neighbor algorithms are subject to these types of error propagation problems. Additionally, we provide persuasive evidence on the trade-off between search performance and analytics effectiveness. Our experimental evaluation demonstrates that a state-of-the-art approximate nearest neighbor search method (L2KNNGApprox) is not an effective solution in most cases. When tuned to achieve high search recall (80% or higher), it provides a fairly competitive recommendation performance compared to an efficient exact search method but offers no advantage in terms of efficiency (0.1x—1.5x speedup). Low search recall (<60%) leads to poor recommendation performance. Finally, medium recall values (60%—80%) lead to reasonable recommendation performance but are hard to achieve and offer only a modest gain in efficiency (1.5x—2.3x).

Available for download on Thursday, October 07, 2021

Share

COinS