Publication Date
12-7-2020
Document Type
Article
Publication Title
Physical Review Research
Volume
2
Issue
4
DOI
10.1103/PhysRevResearch.2.043325
Abstract
Weak measurement in tandem with real-time feedback control is a new route toward engineering novel non-equilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) using backaction-limited weak measurements in conjunction with spatially resolved feedback. Feedback in the form of a single-particle potential can introduce effective interactions that enter into the stochastic equation governing system dynamics. The effective interactions are tunable and can be made analogous to Feshbach resonances -- spin-independent and spin-dependent -- but without changing atomic scattering parameters. Feedback cooling prevents runaway heating due to measurement backaction and we present an analytical model to explain its effectiveness. We showcase our toolbox by studying a two-component BEC using a stochastic mean-field theory, where feedback induces a phase transition between easy-axis ferromagnet and spin-disordered paramagnet phases. We present the steady-state phase diagram as a function of intrinsic and effective spin-dependent interaction strengths. Our result demonstrates that closed-loop quantum control of Bose-Einstein condensates is a powerful new tool for quantum engineering in cold-atom systems.
Keywords
Quantum control, Quantum feedback, Bose-Einstein condensates
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Department
Physics and Astronomy
Recommended Citation
Hilary M. Hurst, Shangjie Guo, and I. B. Spielman. "Feedback induced magnetic phases in binary Bose-Einstein condensates" Physical Review Research (2020). https://doi.org/10.1103/PhysRevResearch.2.043325
Comments
This is the Version of Record and can also be read online here.