Publication Date


Document Type



Physics and Astronomy


Condensed Matter Physics

Publication Title

Physical Review B


We study the dynamics of domain walls (DWs) in a metallic, ferromagnetic nanowire. We develop a Keldysh collective coordinate technique to describe the effect of conduction electrons on rigid magnetic structures. The effective Lagrangian and Langevin equations of motion for a DW are derived. The DW dynamics is described by two collective degrees of freedom: position and tilt-angle. The coupled Langevin equations therefore involve two correlated noise sources, leading to a generalized fluctuation-dissipation theorem (FDT). The DW response kernel due to electrons contains two parts: one related to dissipation via FDT, and another `inertial' part. We prove that the latter term leads to a mass for both degrees of freedom, even though the intrinsic bare mass is zero. The electron-induced mass is present even in a clean system without pinning or specifically engineered potentials. The resulting equations of motion contain rich dynamical solutions and point toward a new way to control domain wall motion in metals via the electronic system properties. We discuss two observable co nsequences of the mass, hysteresis in the DW dynamics and resonant response to ac current.


Fluctuation theorems, Magnetic domains, Magnetization dynamics, Spintronics


This article originally appeared in Physical Review B, volume 101, issue 5, 2020, published by the American Physical Society. ©2020 American Physical Society. The article can also be found online at this link.

SJSU users: To read online, use the following link to login and access the article via SJSU databases.