Publication Date
5-22-2019
Document Type
Article
Publication Title
Physical Review A
Volume
99
Issue
5
DOI
10.1103/PhysRevA.99.053612
Abstract
Weakly measuring many-body systems and allowing for feedback in real-time can simultaneously create and measure new phenomena in strongly correlated quantum systems. We study the dynamics of a continuously measured two-component Bose-Einstein condensate (BEC) potentially containing a domain wall, and focus on the trade-off between usable information obtained from measurement and quantum backaction. Each weakly measured system yields a measurement record from which we extract real-time dynamics of the domain wall. We show that quantum backaction due to measurement causes two primary effects: domain wall diffusion and overall heating. The system dynamics and signal-to-noise ratio depend on the choice of measurement observable. We describe a feedback protocol to create and stabilize a domain wall in the regime where domain walls are unstable, giving a prototype example of Hamiltonian engineering using measurement and feedback.
Keywords
Cold atoms & matter waves, Spinor Bose Einstein condensates
Department
Physics and Astronomy
Recommended Citation
Hilary M. Hurst and I. B. Spielman. "Measurement-induced dynamics and stabilization of spinor-condensate domain walls" Physical Review A (2019). https://doi.org/10.1103/PhysRevA.99.053612
Comments
This article originally appeared in Physical Review A, volume 99, issue 5, 2019, published by the American Physical Society. ©2019 American Physical Society. The article can also be found online at this link.
SJSU users: To read online, use the following link to login and access the article via SJSU databases.