Publication Date


Document Type



Physics and Astronomy


Atomic, Molecular and Optical Physics

Publication Title

Physical Review A


Weakly measuring many-body systems and allowing for feedback in real-time can simultaneously create and measure new phenomena in strongly correlated quantum systems. We study the dynamics of a continuously measured two-component Bose-Einstein condensate (BEC) potentially containing a domain wall, and focus on the trade-off between usable information obtained from measurement and quantum backaction. Each weakly measured system yields a measurement record from which we extract real-time dynamics of the domain wall. We show that quantum backaction due to measurement causes two primary effects: domain wall diffusion and overall heating. The system dynamics and signal-to-noise ratio depend on the choice of measurement observable. We describe a feedback protocol to create and stabilize a domain wall in the regime where domain walls are unstable, giving a prototype example of Hamiltonian engineering using measurement and feedback.


Cold atoms & matter waves, Spinor Bose Einstein condensates


This article originally appeared in Physical Review A, volume 99, issue 5, 2019, published by the American Physical Society. ©2019 American Physical Society. The article can also be found online at this link.

SJSU users: To read online, use the following link to login and access the article via SJSU databases.