Rapid discrimination of Chinese dry-cured hams based on Tri-step infrared spectroscopy and computer vision technology
Publication Date
3-5-2020
Document Type
Article
Publication Title
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
Volume
228
DOI
10.1016/j.saa.2019.117842
Abstract
The aim of this study was to establish rapid and efficient methods based on a Tri-step infrared spectroscopy (Fourier transform infrared spectroscopy (FT-IR) integrated with second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR)) and computer vision technology to identify and evaluate the quality of three Chinese dry-cured hams (Jinhua, Xuanwei and Rugao hams). 9 dry-cured hams (3 different quality grades of each geographical origin) had similar IR spectra. Nevertheless, they could be further discriminated visually by SD-IR and 2DCOS-IR spectra. All samples can be separated by the computer vision technology incorporated with Principal Component Analysis (PCA) and Cluster analysis (CA). This study not only preliminarily verified the possibility of using Tri-step infrared spectroscopy and computer vision technology to discriminate the geographical origins and quality grades of Chinese dry-cured hams, but also provided prospects of the application of infrared spectroscopy and computer vision technology to authenticate other meat products.
Funding Number
31540087
Funding Sponsor
National Natural Science Foundation of China
Keywords
Computer vision technology, Dry-cured ham, Geographical origin, Quality grades, Tri-step infrared spectroscopy
Department
Nutrition, Food Science and Packaging
Recommended Citation
Danni Zhang, Xi Feng, Changhua Xu, Dong Xia, Siqi Liu, Shaoting Gao, Fuping Zheng, and Yuan Liu. "Rapid discrimination of Chinese dry-cured hams based on Tri-step infrared spectroscopy and computer vision technology" Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy (2020). https://doi.org/10.1016/j.saa.2019.117842