Publication Date
12-15-2016
Document Type
Article
Publication Title
Physical Review A
Volume
94
Issue
6
DOI
10.1103/physreva.94.063613
Abstract
The internal degrees of freedom provided by ultracold atoms give a route for realizing higher dimensional physics in systems with limited spatial dimensions. Non-spatial degrees of freedom in these systems are dubbed "synthetic dimensions". This connection is useful from an experimental standpoint but complicated by the fact that interactions alter the condensate ground state. Here we use the Gross-Pitaevskii equation to study ground state properties of a spin-1 Bose gas under the combined influence of an optical lattice, spin-orbit coupling, and interactions at the mean field level. The associated phases depend on the sign of the spin-dependent interaction parameter and the strength of the optical lattice potential. We find "charge" and spin density wave phases which are directly related to helical spin order in real space and affect the behavior of edge currents in the synthetic dimension. We determine the resulting phase diagram as a function of the spin-orbit coupling and spin-dependent interaction strength, considering both attractive (ferromagnetic) and repulsive (polar) spin-dependent interactions. Our results are applicable to current and future experiments, specifically with 87Rb, 7Li, 41K, and 23Na.
Keywords
Cold gases in optical lattices
Department
Physics and Astronomy
Recommended Citation
Hilary M. Hurst, Justin H. Wilson, J. H. Pixley, I. B. Spielman, and Stefan S. Natu. "Real-space mean-field theory of a spin-1 Bose gas in synthetic dimensions" Physical Review A (2016). https://doi.org/10.1103/physreva.94.063613
Comments
This article originally appeared in Physical Review A, volume 94, issue 6, 2016, published by the American Physical Society. ©2016 American Physical Society. The article can also be found online at this link.
SJSU users: To read online, use the following link to login and access the article via SJSU databases.