Calibrated Si mobility and incomplete ionization models with field dependent ionization energy for cryogenic simulations
Publication Date
9-23-2020
Document Type
Conference Proceeding
Publication Title
2020 International Conference on Simulation of Semiconductor Processes and Devices, (SISPAD)
Volume
2020-September
DOI
10.23919/SISPAD49475.2020.9241599
First Page
193
Last Page
196
Abstract
Cryogenic silicon CMOS operating between 77K and 4.2K is becoming more popular in high-speed server applications and the periphery of quantum computers. In the cryogenic regime, dopant incomplete ionization and field enhanced ionization become dominating physical phenomena. Therefore, it is important to use accurate and well-calibrated mobility and incomplete ionization models in cryogenic TCAD simulations. In this paper, we present a Philips Unified Mobility Model (PhuMob) and Altermatt's incomplete ionization model calibrated between 300K and 20K for boron and arsenic dopants in silicon across 5 orders of magnitude in doping concentration. A novel method is proposed to include field-dependent ionization energy in Altermatt's model, which results in good convergence even in 3D TCAD simulations at 4K.
Keywords
Cryogenic, Field Dependent Ionization, Incomplete Ionization, TCAD
Department
Electrical Engineering
Recommended Citation
Hiu Yung Wong. "Calibrated Si mobility and incomplete ionization models with field dependent ionization energy for cryogenic simulations" 2020 International Conference on Simulation of Semiconductor Processes and Devices, (SISPAD) (2020): 193-196. https://doi.org/10.23919/SISPAD49475.2020.9241599