Publication Date
11-1-2023
Document Type
Article
Publication Title
Healthcare Analytics
Volume
3
DOI
10.1016/j.health.2022.100132
Abstract
Brain cancer is one of the most deadly cancers, with a very low survival rate. By understanding the factors that lead to cancer spreading, practitioners can concentrate their efforts on providing the most effective treatment, and they can modify the treatment plan as necessary. Also, knowing the likelihood of a patient's survival over a specified time period can enable them to make informed decisions about adjusting their routines, future investments, and other health-related decisions. The use of data-driven models in cancer research has gained increased popularity over the past several decades. Moreover, there is still much uncertainty surrounding the factors that contribute to survival of cancer, making it difficult to develop a model. The existing literature on brain cancer contains a variety of machine learning models. However, many of them lack a high degree of accuracy, and, in medical research, accuracy is essential to the proper guidance of treatment decisions. Therefore, we have proposed a framework comprising multiple phases of classical statistics and machine learning methods to find a parsimonious model with a high degree of accuracy (98.9%) for predicting brain cancer survivability. Furthermore, we develop a prototype web-based interactive tool to facilitate the practical implementation of the proposed model and provide a deeper understanding of how a particular factor affects survival when other factors remain unchanged. By integrating this tool into healthcare settings, medical professionals can rapidly detect potentially vulnerable patients, and it can also be useful in determining the most effective treatment plan.
Keywords
brain cancer, Cook's distance, cross-validation, data mining, machine learning, predictive analytics
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Department
Computer Science
Recommended Citation
Gopal Nath, Austin Coursey, Yang Li, Srikanth Prabhu, Harish Garg, Shaymal C. Halder, and Saptarshi Sengupta. "An interactive web-based tool for predicting and exploring brain cancer survivability" Healthcare Analytics (2023). https://doi.org/10.1016/j.health.2022.100132
Comments
This is the Version of Record and can also be read online here.