Generative adversarial networks and image-based malware classification

Publication Date

1-1-2023

Document Type

Article

Publication Title

Journal of Computer Virology and Hacking Techniques

DOI

10.1007/s11416-023-00465-2

Abstract

For efficient malware removal, determination of malware threat levels, and damage estimation, malware family classification plays a critical role. In this paper, we extract features from malware executable files and represent them as images using various approaches. We then focus on generative adversarial networks (GAN) for multiclass classification and compare our GAN results to other popular machine learning techniques, including support vector machine (SVM), XGBoost, and restricted Boltzmann machines (RBM). We find that the AC-GAN discriminator is generally competitive with other machine learning techniques. We also evaluate the utility of the GAN generative model for adversarial attacks on image-based malware detection. While AC-GAN generated images are visually impressive, we find that they are easily distinguished from real malware images using any of several learning techniques. This result indicates that our GAN generated images are of surprisingly little value in adversarial attacks.

Comments

The preprint of this item can be found on arXiv at the following address: https://doi.org/10.48550/arXiv.2207.00421

Department

Computer Science; Information Systems and Technology

Share

COinS