Publication Date
5-1-2021
Document Type
Article
Publication Title
Monthly Weather Review
Volume
149
Issue
5
DOI
10.1175/MWR-D-20-0198.1
First Page
1247
Last Page
1264
Abstract
Remote sensing techniques have been used to study and track wildfire smoke plume structure and evolution; however, knowledge gaps remain because of the limited availability of observational datasets aimed at understanding finescale fire-atmosphere interactions and plume microphysics. Meteorological radars have been used to investigate the evolution of plume rise in time and space, but highly resolved plume observations are limited. In this study, we present a new mobile millimeter-wave (Ka band) Doppler radar system acquired to sample the fine-scale kinematics and microphysical properties of active wildfire smoke plumes from both wildfires and large prescribed fires. Four field deployments were conducted in autumn of 2019 during two wildfires in California and one prescribed burn in Utah. Radar parameters investigated in this study include reflectivity, radial velocity, Doppler spectrum width, differential reflectivity ZDR, and copolarized correlation coefficient rHV. Observed radar reflectivity ranged between 215 and 20 dBZ in plume, and radial velocity ranged from 0 to 16ms21. Dual-polarimetric observations revealed that scattering sources within wildfire plumes are primarily nonspherical and oblate-shaped targets as indicated by ZDR values measuring above 0 and rHV values below 0.8 within the plume. Doppler spectrum width maxima were located near the updraft core region and were associated with radar reflectivity maxima.
Funding Number
AGS-1727052
Funding Sponsor
Pacific Northwest Research Station
Keywords
Forest fires, Radars/radar observations, Remote sensing, Wildfires
Department
Meteorology and Climate Science
Recommended Citation
TAYLOR B. AYDELL and CRAIG B. CLEMENTS. "Mobile Ka-Band Polarimetric Doppler Radar Observations of Wildfire Smoke Plumes" Monthly Weather Review (2021): 1247-1264. https://doi.org/10.1175/MWR-D-20-0198.1
Comments
© Copyright 2021 AMS