Publication Date
12-1-2021
Document Type
Article
Publication Title
Biomolecules
Volume
11
Issue
12
DOI
10.3390/biom11121788
Abstract
Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets thereof are represented via graph structures, is a particularly useful way of obtaining highly com-pressed representations of molecular structures, and simulations operating via such representations can achieve substantial computational savings. A drawback of coarse-graining, however, is the loss of atomistic detail—an effect that is especially acute for topological representations such as protein structure networks (PSNs). Here, we introduce an approach based on a combination of machine learning and physically-guided refinement for inferring atomic coordinates from PSNs. This “neural upscaling” procedure exploits the constraints implied by PSNs on possible configurations, as well as differences in the likelihood of observing different configurations with the same PSN. Using a 1 µs atomistic molecular dynamics trajectory of Aβ1–40, we show that neural upscaling is able to effectively recapitulate detailed structural information for intrinsically disordered proteins, being particularly successful in recovering features such as transient secondary structure. These results suggest that scalable network-based models for protein structure and dynamics may be used in settings where atomistic detail is desired, with upscaling employed to impute atomic coordinates from PSNs.
Funding Number
DMS-1361425
Funding Sponsor
National Science Foundation
Keywords
Coarse-grained models, Intrinsically disordered proteins, Machine learning, Molecular dynamics, Protein structure networks
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Department
Chemistry
Recommended Citation
Vy T. Duong, Elizabeth M. Diessner, Gianmarc Grazioli, Rachel W. Martin, and Carter T. Butts. "Neural upscaling from residue-level protein structure networks to atomistic structures" Biomolecules (2021). https://doi.org/10.3390/biom11121788