Prediction of higher-order links using global vectors and Hasse diagrams

Publication Date

1-1-2021

Document Type

Conference Proceeding

Publication Title

Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021

DOI

10.1109/BigData52589.2021.9671432

First Page

4802

Last Page

4811

Abstract

The primary objective of this work is to utilize the GloVeNoR node embedding technique, as well as the Simplex2Vec triangle embedding technique, to perform higher-order link prediction, i.e., the possibility of an interaction of more than two nodes. Additionally, we evaluate the predictions generated by our methods and compare them with existing higher-order link prediction approaches using various benchmark datasets. Based on our experiments, we show that the triangle embeddings generated using our techniques increase the average performance over the five datasets evaluated using the AUC-PR relative to random baseline as a metric for higher-order link prediction.

Keywords

global vectors, graph/node embeddings, Hasse diagram, higher-order structures, link prediction

Department

Computer Science

Share

COinS