Publication Date
10-18-2022
Document Type
Article
Publication Title
ACS Omega
Volume
7
Issue
41
DOI
10.1021/acsomega.2c03567
First Page
36235
Last Page
36243
Abstract
The scarce negative Poisson's ratio (NPR) in a two-dimensional (2D) material is an exceptional auxetic property that offers an opportunity to develop nanoscale futuristic multi-functional devices and has been drawing extensive research interest. Inspired by the buckled pentagonal iso-structures that often expose NPR, we employ state-of-the-art first-principles density functional theory calculations and analyses to predict a new 2D metallic ternary auxetic penta-phosphorus boron nitride (p-PBN) with a high value of NPR. The new p-PBN is stable structurally, mechanically, and dynamically and sustainable at room temperature, with experimental feasibility. The short and strong quasi sp3-hybridized B-N bond and unique bond variation and geometrical reconstruction with an applied strain allow p-PBN to inherit a high value of NPR (-0.236) along the (010) direction, the highest among any other ternary penta iso-structures reported to date. Despite having a small elastic strength, the highly asymmetric Young's modulus and Poisson's ratio along the (100) and (010) directions indicate large anisotropic mechanics, which are crucial for potential applications in nanomechanics and nanoauxetics.
Funding Number
ACI-1548562
Funding Sponsor
National Science Foundation
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Department
Chemical and Materials Engineering
Recommended Citation
Shambhu Bhandari Sharma, Issam A. Qattan, Santosh Kc, and Ahmad M. Alsaad. "Large Negative Poisson's Ratio and Anisotropic Mechanics in New Penta-PBN Monolayer" ACS Omega (2022): 36235-36243. https://doi.org/10.1021/acsomega.2c03567