Publication Date

11-1-2022

Document Type

Article

Publication Title

Sensors

Volume

22

Issue

22

DOI

10.3390/s22228656

Abstract

Human locomotion involves the modulation of whole-body mechanical energy, which can be approximated by the motion dynamics at the body’s center of mass (BCOM). This study introduces a new method to measure gait efficiency based on BCOM oscillatory kinetic energy patterns using a single inertia measurement unit (IMU). Forty-seven participants completed an overground walk test at a self-selected speed. The average oscillatory energy (OE) at BCOM during walking was derived from measured acceleration data. The total OE showed a positive correlation with forward-walking velocity. The ratio of total OE to constant forward kinetic energy for healthy adults varied from ~1–5%, which can be considered the percent of oscillatory energy required to maintain gait posture for a given forward-walking velocity. Mathematically, this ratio is proportional to the square of the periodic peak-to-peak displacement of BCOM. Individuals with gait impairments exhibited a higher percentage of oscillatory energy, typically >6%. This wearable IMU-based method has the potential to be an effective tool for the rapid, quantitative assessment of gait efficiency in clinical and rehabilitation settings.

Keywords

BCOM, energy partitioning, gait analysis, IMU, oscillatory energy

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Department

Kinesiology

COinS