Publication Date
4-1-2022
Document Type
Article
Publication Title
Energies
Volume
15
Issue
7
DOI
10.3390/en15072350
Abstract
The international community has set ambitious targets to replace the use of fossil fuels for electricity generation with renewable energy sources. The use of large-scale (e.g., solar farms) and small-scale solutions (e.g., onsite green technologies) represents one way to achieve these goals. This paper presents a mathematical optimization framework to coordinate the energy decisions between the distribution network and the networked microgrids embedded within it. Utility-scale renewable and conventional generators are considered in the distribution network, while the microgrids include onsite renewable generation and energy storage. The distribution network operator utilizes demand-side management policies to improve the network’s efficiency, and the microgrids operate under these programs by reducing their energy usage, scheduling the electricity usage under dynamic tariffs, and supplying energy to the grid. The uncertainty of renewable energy sources is addressed by robust optimization. The decisions of the distribution network and the microgrids are made independently, whereas the proposed collaboration scheme allows for the alignment of the systems’ objectives. A case study is analyzed to show the capability of the model to assess multiple configurations, eliminating the necessity of load shedding, and increasing the power supplied by the microgrids (22.3 MW) and the renewable energy share by up to 5.03%.
Funding Sponsor
Consejo Nacional de Ciencia y Tecnología
Keywords
demand response, intelligent energy management systems, renewable energy integration
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Department
Marketing and Business Analytics
Recommended Citation
José Luis Ruiz Duarte and Neng Fan. "Operation of a Power Grid with Embedded Networked Microgrids and Onsite Renewable Technologies" Energies (2022). https://doi.org/10.3390/en15072350