Endothelial-Specific Targeting of RhoA Signaling via CD31 Antibody-Conjugated Nanoparticles
Publication Date
4-1-2023
Document Type
Article
Publication Title
Journal of Pharmacology and Experimental Therapeutics
Volume
385
Issue
1
DOI
10.1124/jpet.122.001384
First Page
35
Last Page
49
Abstract
Existing vascular endothelial growth factor-oriented antiangiogenic approaches are known for their high potency. However, significant side effects associated with their use drive the need for novel antiangiogenic strategies. The small GTPase RhoA is an established regulator of actin cytoskeletal dynamics. Previous studies have highlighted the impact of endothelial RhoA pathway on angiogenesis. Rho-associate kinase (ROCK), a direct RhoA effector, is potently inhibited by Fasudil, a clinically relevant ROCK inhibitor. Here, we aimed to target the RhoA signaling in endothelial cells by generating Fasudil-encapsulated CD31-targeting liposomes as a potential antiangiogenic therapy. The liposomes presented desirable characteristics, preferential binding to CD31-expressing HEK293T cells and to endothelial cells, inhibited stress fiber formation and cytoskeletal-related morphometric parameters, and inhibited in vitro angiogenic functions. Overall, this work shows that the nanodelivery-mediated endothelial targeting of RhoA signaling can offer a promising strategy for angiogenesis inhibition in vascular-related diseases. SIGNIFICANCE STATEMENT: Systemic administration of antiangiogenic therapeutics induces side effects to non-targeted tissues. This study, among others, has shown the impact of the RhoA signaling in the endothelial cells and their angiogenic functions. Here, to minimize potential toxicity, this study generated CD31-targeting liposomes with encapsulated Fasudil, a clinically relevant Rho kinase inhibitor, and successfully targeted endothelial cells. In this proof-of-principle study, the efficient Fasudil delivery, its impact on the endothelial signaling, morphometric alterations, and angiogenic functions verify the benefits of site-targeted antiangiogenic therapy.
Department
Marketing and Business Analytics
Recommended Citation
Behnaz Lahooti, Racheal G. Akwii, Dhavalkumar Patel, Siavash ShahbaziNia, Margarita Lamprou, Mahboubeh Madadi, Thomas J. Abbruscato, Aristotelis Astrinidis, Ulrich Bickel, Abraham Al-Ahmad, Nadezhda A. German, George Mattheolabakis, and Constantinos M. Mikelis. "Endothelial-Specific Targeting of RhoA Signaling via CD31 Antibody-Conjugated Nanoparticles" Journal of Pharmacology and Experimental Therapeutics (2023): 35-49. https://doi.org/10.1124/jpet.122.001384