Publication Date

6-1-2022

Document Type

Article

Publication Title

Current Opinion in Neurobiology

Volume

74

DOI

10.1016/j.conb.2022.102542

Abstract

The muscle spindle (MS) provides essential sensory information for motor control and proprioception. The Group Ia and II MS afferents are low threshold slowly-adapting mechanoreceptors and report both static muscle length and dynamic muscle movement information. The exact molecular mechanism by which MS afferents transduce muscle movement into action potentials is incompletely understood. This short review will discuss recent evidence suggesting that PIEZO2 is an essential mechanically sensitive ion channel in MS afferents and that vesicle-released glutamate contributes to maintaining afferent excitability during the static phase of stretch. Other mechanically gated ion channels, voltage-gated sodium channels, other ion channels, regulatory proteins, and interactions with the intrafusal fibers are also important for MS afferent mechanosensation. Future studies are needed to fully understand mechanosensation in the MS and whether different complements of molecular mediators contribute to the different response properties of Group Ia and II afferents.

Funding Number

SC3 GM127195

Funding Sponsor

National Institutes of Health

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Department

Biological Sciences

Share

COinS