Machine Learning for Malware Evolution Detection
Publication Date
1-1-2022
Document Type
Contribution to a Book
Publication Title
Advances in Information Security
Volume
54
DOI
10.1007/978-3-030-97087-1_8
First Page
183
Last Page
213
Abstract
Malware evolves over time and antivirus must adapt to such evolution. Hence, it is critical to detect those points in time where malware has evolved so that appropriate countermeasures can be undertaken. In this research, we perform a variety of experiments on a significant number of malware families to determine when malware evolution is likely to have occurred. All of the evolution detection techniques that we consider are based on machine learning and can be fully automated—in particular, no reverse engineering or other labor-intensive manual analysis is required. Specifically, we consider analysis based on hidden Markov models (HMM) and the word embedding techniques HMM2Vec and Word2Vec.
Department
Computer Science
Recommended Citation
Lolitha Sresta Tupadha and Mark Stamp. "Machine Learning for Malware Evolution Detection" Advances in Information Security (2022): 183-213. https://doi.org/10.1007/978-3-030-97087-1_8