Multivariate-aided Power-consumption Prediction Based on LSTM-Kalman Filter

Publication Date

1-1-2022

Document Type

Conference Proceeding

Publication Title

Proceedings - 2022 International Conference on Networking and Network Applications, NaNA 2022

DOI

10.1109/NaNA56854.2022.00100

First Page

545

Last Page

549

Abstract

Forecasting the power consumption of home appliances on a time-series basis is significant in monitoring and predicting daily human behaviors. On the other hand, time-series forecasting is challenged by the uncertain and complex external environment, such as weather conditions that affect prediction accuracy. A promising method to improve the prediction accuracy is to adopt multiple external environment variables. Regarding this, the paper proposes using the multivariate dataset and the Kalman filter (KF) to predict the electrical power consumed by the smart home appliance. We conduct extensive experiments based on the real datasets of power consumption, which are classified into multivariate and univariate and used in the LSTM-KF model to predict the power consumption of the smart home appliance. The LSTM here stores the data information for static prediction, and the Kalman filter dynamically adjusts the prediction results to obtain a final prediction value. The LSTM-KF models applying the proposed multivariate and the univariate are compared in terms of the RMSE and the determination coefficient R2. The LSTM - KF using multivariate shows the best accuracy. Nonetheless, the univariate method using the Kalman filter outperforms the multivariate method without using the Kalman filter, implying the significance of using multiple variables together with the Kalman filter in improving the prediction accuracy.

Funding Number

2020R1I1A3072688

Funding Sponsor

National Research Foundation of Korea

Keywords

Kalman filter, LSTM, multivariate, SIoT energy consumption, time-series prediction

Department

Applied Data Science

Share

COinS