Megaphylogeny Resolves Global Patterns of Mushroom Evolution
Publication Date
March 2019
Document Type
Article
Publication Title
Nature Ecology & Evolution
Volume
3
DOI
10.1038/s41559-019-0834-1
First Page
668
Last Page
678
Abstract
Mushroom-forming fungi (Agaricomycetes) have the greatest morphological diversity and complexity of any group of fungi. They have radiated into most niches and fulfil diverse roles in the ecosystem, including wood decomposers, pathogens or mycorrhizal mutualists. Despite the importance of mushroom-forming fungi, large-scale patterns of their evolutionary history are poorly known, in part due to the lack of a comprehensive and dated molecular phylogeny. Here, using multigene and genome-based data, we assemble a 5,284-species phylogenetic tree and infer ages and broad patterns of speciation/extinction and morphological innovation in mushroom-forming fungi. Agaricomycetes started a rapid class-wide radiation in the Jurassic, coinciding with the spread of (sub)tropical coniferous forests and a warming climate. A possible mass extinction, several clade-specific adaptive radiations and morphological diversification of fruiting bodies followed during the Cretaceous and the Paleogene, convergently giving rise to the classic toadstool morphology, with a cap, stalk and gills (pileate-stipitate morphology). This morphology is associated with increased rates of lineage diversification, suggesting it represents a key innovation in the evolution of mushroom-forming fungi. The increase in mushroom diversity started during the Mesozoic-Cenozoic radiation event, an era of humid climate when terrestrial communities dominated by gymnosperms and reptiles were also expanding.
Recommended Citation
Torda Varga, Krisztina Krizsán, Csenge Földi, Bálint Dima, Marisol Sánchez-García, Santiago Sánchez-Ramírez, Gergely Szöllősi, János Szarkándi, Viktor Papp, László Albert, William Andreopoulos, Claudio Angelini, Vladimír Antonín, Kerrie Barry, Neale Bougher, Peter Buchanan, Bart Buyck, Viktória Bense, Pam Catcheside, Mansi Chovatia, Jerry Cooper, Wolfgang Dämon, Dennis Desjardin, Péter Finy, József Geml, Sajeet Haridas, Karen Hughes, Alfredo Justo, Dariusz Karasiński, Ivona Kautmanova, Brigitta Kiss, Sándor Kocsubé, Heikki Kotiranta, Kurt LaButti, Bernardo Lechner, Kare Liimatainen, Anna Lipzen, Zoltán Lukács, Sirma Mihaltcheva, Louis Morgado, Tuula Niskanen, Machiel Noordeloos, Robin Ohm, Beatriz Ortiz-Santana, Clark Ovrebo, Nikolett Rácz, Robert Riley, Anton Savchenko, Anton Shiryaev, Karl Soop, Viacheslav Spirin, Csilla Szebenyi, Michal Tomšovský, Rodham Tulloss, Jessie Uehling, Igor Grigoriev, Csaba Vágvölgyi, Tamás Papp, Francis Martin, Otto Miettinen, David Hibbett, and László Nagy. "Megaphylogeny Resolves Global Patterns of Mushroom Evolution" Nature Ecology & Evolution (2019): 668-678. https://doi.org/10.1038/s41559-019-0834-1