Printed graphene and its composite with copper for electromagnetic interference shielding applications
Publication Date
3-25-2024
Document Type
Article
Publication Title
Nanotechnology
Volume
35
Issue
13
DOI
10.1088/1361-6528/ad12e9
Abstract
Advances in mobile electronics and telecommunication systems along with 5G technologies have been escalating the electromagnetic interference (EMI) problem in recent years. Graphene-based material systems such as pristine graphene, graphene-polymer composites and other graphene-containing candidates have been shown to provide adequate EMI shielding performance. Besides achieving the needed shielding effectiveness (SE), the method of applying the candidate shielding material onto the object in need of protection is of enormous importance due to considerations of ease of application, reduced logistics and infrastructure, rapid prototyping and throughput, versatility to handle both rigid and flexible substrates and cost. Printing readily meets all these criteria and here we demonstrate plasma jet printing of thin films of graphene and its composite with copper to meet the EMI shielding needs. SE over 30 dB is achieved, which represents blocking over 99.9% of the incoming radiation. Graphene and its composite with copper yield higher green index compared to pure copper shields, implying reduced reflection of incoming electromagnetic waves to help reduce secondary pollution.
Funding Number
DE-SC0022744
Funding Sponsor
Governor's Office of Planning and Research
Keywords
atmospheric pressure plasma jet, electromagnetic interference shielding, graphene composites, graphene printing, plasma printing
Department
Electrical Engineering
Recommended Citation
Daniel Gutierrez, Pranay Doshi, Hiu Yung Wong, Dennis Nordlund, and Ram P. Gandhiraman. "Printed graphene and its composite with copper for electromagnetic interference shielding applications" Nanotechnology (2024). https://doi.org/10.1088/1361-6528/ad12e9