Transformative AI: Responsible, Transparent, and Trustworthy AI Systems
Publication Date
12-12-2023
Document Type
Book
Publication Title
Transformative AI: Responsible, Transparent, and Trustworthy AI Systems
First Page
1
Last Page
156
Abstract
Transformative AI provides a comprehensive overview of the latest trends, challenges, applications, and opportunities in the field of Artificial Intelligence. The book covers the state of the art in AI research, including machine learning, natural language processing, computer vision, and robotics, and explores how these technologies are transforming various industries and domains, such as healthcare, finance, education, and entertainment. The book also addresses the challenges that come with the widespread adoption of AI, including ethical concerns, bias, and the impact on jobs and society. It provides insights into how to mitigate these challenges and how to design AI systems that are responsible, transparent, and trustworthy. The book offers a forward-looking perspective on the future of AI, exploring the emerging trends and applications that are likely to shape the next decade of AI innovation. It also provides practical guidance for businesses and individuals on how to leverage the power of AI to create new products, services, and opportunities. Overall, the book is an essential read for anyone who wants to stay ahead of the curve in the rapidly evolving field of Artificial Intelligence and understand the impact that this transformative technology will have on our lives in the coming years.
Keywords
5G, 5G, Affective Computing, AI, AI Ethics, Alexa, Augment Reality, Autoencoders, Autonomous Cars, Autoregressive models, Big Data, Big Data Analytics, Bitcoin, Blockchain, C3PO, ChatGPT, Cloud Computing, CNN, Computer Vision, Conditional Automation, Convolutional Neural Networks, Cryptocurrency, Cybersecurity, Deep Learning, Deep Learning, Digital Transformation, Driver Assistance, Driverless Cars, Entanglement, Ethereum, Explainable AI. Environment and sustainability, Facebook, Facial Recognition, Feedforward. Neural Networks, Fog Computing, Full Automation, Twitter, General AI, Generative Adversarial Networks (GANs), Generative AI, Google, High Automation, Hybrid Blockchain, Hybrid Blockchain, IEEE, IIoT, Industrial Internet of Things, Internet of Things, IoT, Jarvis, Long Short-Term Memory Networks, LTE, Machin Learning, Microsoft, Narrow AI, Natural Language Generation (NLG), Natural Language Processing (NLP), NetFlix, Network Security, Neural Networks, NYTimes, Open Source, Partial Automation, PayPal, Private Blockchain, Private Cloud Computing, Quantum Communications, Quantum Computing, Quantum Cryptography, Quantum Cryptography, Quantum Internet. Wearable Computing Devices (WCD). Autonomic Computing, Quantum Machine Learning (QML), R2D2, Reactive Machines . Limited Memory, Recurrent Neural Networks, Robots, Sci-Fi movies, Self-Aware, Siri, Small Data, Smart Contracts. Hybrid Cloud Computing, Smart Devices, Super AI, Superposition, Theory of Mind, Thick Data, Variational Autoencoders (VAEs), Virtual Reality, Voice User Interface, VUI, Wearable Technology, Wi-Fi, Zero-Trust Model
Department
General Engineering
Recommended Citation
Ahmed Banafa. "Transformative AI: Responsible, Transparent, and Trustworthy AI Systems" Transformative AI: Responsible, Transparent, and Trustworthy AI Systems (2023): 1-156.