Publication Date

12-1-2023

Document Type

Article

Publication Title

Journal of Experimental Marine Biology and Ecology

Volume

569

DOI

10.1016/j.jembe.2023.151956

Abstract

Fishes and other consumers excrete metabolic waste products, including dissolved nutrients rich in nitrogen, which is an essential nutrient for primary production. Relatively little is known about the magnitude and variability of nutrients excreted by fishes in kelp forest ecosystems and whether consumer-derived nutrients are important for supporting kelp productivity. In this study, the supply of ammonium (NH4+) excreted by the dominant fishes (30 species representing ∼85% of total fish biomass) was investigated on nearshore rocky reefs in California. Using rapid field incubations, the amount of excreted dissolved ammonium was measured as a function of body size (n = 460 individuals) and predictive models were developed relating mass to excretion rates at the family-level. Mass-specific excretion rates ranged from 0.08 to 3.45 μmol·g−1·hr−1, and per capita ammonium excretion rates ranged from 5.9 to 2765 μmol·individual·hr−1. Ammonium excretion scaled with fish body mass to the ¾ power, as predicted by the metabolic theory of ecology; mass-specific excretion rates were higher in smaller fishes, but larger fishes contributed more ammonium per individual. When controlling for body size, ammonium excretion rates were greatest among surfperch (Embiotocidae), damselfish (Pomacentridae), and wrasses (Labridae), and the general trophic groups of planktivores and micro-carnivores. When body size differences were considered, the greatest mean excretion rates per individual were observed in larger-bodied species, such as California Sheephead (Semicossyphus pulcher) and Lingcod (Ophiodon elongatus). Empirical estimates of nutrient excretion by fishes, among the first measured in temperate kelp forests, were consistent with those in other aquatic systems. Ultimately, empirically derived excretion rates are the first step to quantifying the relative importance of consumers to nutrient cycling in kelp forest ecosystems.

Funding Sponsor

Council on Ocean Affairs Science and Technology, California State University

Keywords

Consumer-derived nutrient excretion, Ecological stoichiometry, Metabolic theory of ecology, Nutrient cycling

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Department

Moss Landing Marine Laboratories

Share

COinS