Publication Date
10-14-2023
Document Type
Article
Publication Title
Journal of Chemical Physics
Volume
159
Issue
14
DOI
10.1063/5.0171207
Abstract
Dissociative adsorption onto a surface introduces dynamic correlations between neighboring sites not found in non-dissociative absorption. We study surface coverage dynamics where reversible dissociative adsorption of dimers occurs on a finite linear lattice. We derive analytic expressions for the equilibrium surface coverage as a function of the number of reactive sites, N, and the ratio of the adsorption and desorption rates. Using these results, we characterize the finite size effect on the equilibrium surface coverage. For comparable N’s, the finite size effect is significantly larger when N is even than when N is odd. Moreover, as N increases, the size effect decays more slowly in the even case than in the odd case. The finite-size effect becomes significant when adsorption and desorption rates are considerably different. These finite-size effects are related to the number of accessible configurations in a finite system where the odd-even dependence arises from the limited number of accessible configurations in the even case. We confirm our analytical results with kinetic Monte Carlo simulations. We also analyze the surface-diffusion case where adsorbed atoms can hop into neighboring sites. As expected, the odd-even dependence disappears because more configurations are accessible in the even case due to surface diffusion.
Funding Number
CHE-2213368
Funding Sponsor
National Science Foundation
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Department
Physics and Astronomy
Recommended Citation
Enrique Mercado, Hyun Tae Jung, Changho Kim, Alejandro L. Garcia, Andy J. Nonaka, and John B. Bell. "Surface coverage dynamics for reversible dissociative adsorption on finite linear lattices" Journal of Chemical Physics (2023). https://doi.org/10.1063/5.0171207