Toward impact-based monitoring of drought and its cascading hazards
Publication Date
8-1-2023
Document Type
Article
Publication Title
Nature Reviews Earth and Environment
Volume
4
Issue
8
DOI
10.1038/s43017-023-00457-2
First Page
582
Last Page
595
Abstract
Growth in satellite observations and modelling capabilities has transformed drought monitoring, offering near-real-time information. However, current monitoring efforts focus on hazards rather than impacts, and are further disconnected from drought-related compound or cascading hazards such as heatwaves, wildfires, floods and debris flows. In this Perspective, we advocate for impact-based drought monitoring and integration with broader drought-related hazards. Impact-based monitoring will go beyond top-down hazard information, linking drought to physical or societal impacts such as crop yield, food availability, energy generation or unemployment. This approach, specifically forecasts of drought event impacts, would accordingly benefit multiple stakeholders involved in drought planning, and risk and response management, with clear benefits for food and water security. Yet adoption and implementation is hindered by the absence of consistent drought impact data, limited information on local factors affecting water availability (including water demand, transfer and withdrawal), and impact assessment models being disconnected from drought monitoring tools. Implementation of impact-based drought monitoring thus requires the use of newly available remote sensors, the availability of large volumes of standardized data across drought-related fields, and the adoption of artificial intelligence to extract and synthesize physical and societal drought impacts.
Funding Number
1653841
Funding Sponsor
National Science Foundation
Department
Civil and Environmental Engineering
Recommended Citation
Amir AghaKouchak, Laurie S. Huning, Mojtaba Sadegh, Yue Qin, Yannis Markonis, Farshid Vahedifard, Charlotte A. Love, Ashok Mishra, Ali Mehran, Renee Obringer, Annika Hjelmstad, Shrideep Pallickara, Shakil Jiwa, Martin Hanel, Yunxia Zhao, Angeline G. Pendergrass, Mazdak Arabi, Steven J. Davis, and Philip J. Ward. "Toward impact-based monitoring of drought and its cascading hazards" Nature Reviews Earth and Environment (2023): 582-595. https://doi.org/10.1038/s43017-023-00457-2