Reproductive value in graph-structured populations
Publication Date
1-7-2014
Document Type
Article
Publication Title
Journal of Theoretical Biology
Volume
340
DOI
10.1016/j.jtbi.2013.09.032
First Page
285
Last Page
293
Abstract
Evolutionary graph theory has grown to be an area of intense study. Despite the amount of interest in the field, it seems to have grown separate from other subfields of population genetics and evolution. In the current work I introduce the concept of Fisher's (1930) reproductive value into the study of evolution on graphs. Reproductive value is a measure of the expected genetic contribution of an individual to a distant future generation. In a heterogeneous graph-structured population, differences in the number of connections among individuals translate into differences in the expected number of offspring, even if all individuals have the same fecundity. These differences are accounted for by reproductive value. The introduction of reproductive value permits the calculation of the fixation probability of a mutant in a neutral evolutionary process in any graph-structured population for either the moran birth–death or death–birth process.
Keywords
Fixation probability, Evolutionary graph theory, Evolutionary game theory, Reproductive value
Department
Mathematics and Statistics
Recommended Citation
Wes Maciejewski. "Reproductive value in graph-structured populations" Journal of Theoretical Biology (2014): 285-293. https://doi.org/10.1016/j.jtbi.2013.09.032
Comments
SJSU users: Use the following link to login and access the article via SJSU databases.