Publication Date
2-4-2022
Document Type
Article
Publication Title
IEEE Transactions on Education
DOI
10.1109/TE.2022.3144943
Abstract
Contribution: A roadmap is provided for building a quantum engineering education program to satisfy U.S. national and international workforce needs.
Background: The rapidly growing quantum information science and engineering (QISE) industry will require both quantum-aware and quantum-proficient engineers at the bachelor's level.
Research Question: What is the best way to provide a flexible framework that can be tailored for the full academic ecosystem?
Methodology: A workshop of 480 QISE researchers from across academia, government, industry, and national laboratories was convened to draw on best practices; representative authors developed this roadmap.
Findings: 1) For quantum-aware engineers, design of a first quantum engineering course, accessible to all STEM students, is described; 2) for the education and training of quantum-proficient engineers, both a quantum engineering minor accessible to all STEM majors, and a quantum track directly integrated into individual engineering majors are detailed, requiring only three to four newly developed courses complementing existing STEM classes; 3) a conceptual QISE course for implementation at any postsecondary institution, including community colleges and military schools, is delineated; 4) QISE presents extraordinary opportunities to work toward rectifying issues of inclusivity and equity that continue to be pervasive within engineering. A plan to do so is presented, as well as how quantum engineering education offers an excellent set of education research opportunities; and 5) a hands-on training plan on quantum hardware is outlined, a key component of any quantum engineering program, with a variety of technologies, including optics, atoms and ions, cryogenic and solid-state technologies, nanofabrication, and control and readout electronics.
Keywords
Quantum engineering, quantum information science (QIS), undergraduate education
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Department
Physics and Astronomy
Recommended Citation
Abraham Asfaw, Alexandre Blais, Kenneth R. Brown, Jonathan Candelaria, Christopher Cantwell, Lincoln D. Carr, Joshua Combes, Dripto M. Debroy, John M. Donohue, Sophia E. Economou, Emily Edwards, Michael F. J. Fox, Steven M. Girvin, Alan Ho, Hilary M. Hurst, Zubin Jacob, Blake R. Johnson, Ezekiel Johnston-Halperin, Robert Joynt, Eliot Kapit, Judith Klein-Seetharaman, Martin Laforest, H. J. Lewandowski, Theresa W. Lynn, Corey Rae H. McRae, Celia Merzbacher, Spyridon Michalakis, Prineha Narang, William D. Oliver, Jens Palsberg, David P. Pappas, Michael G. Raymer, David J. Reilly, Mark Saffman, Thomas A. Searles, Jeffrey H. Shapiro, and Chandralekha Singh. "Building a Quantum Engineering Undergraduate Program" IEEE Transactions on Education (2022). https://doi.org/10.1109/TE.2022.3144943
Comments
This is the Version of Record and can also be read online here.