On the characterization of Cloud occurrence and its impact on solar radiation in Mbour, Senegal

Publication Date

8-1-2024

Document Type

Article

Publication Title

Journal of Atmospheric and Solar-Terrestrial Physics

Volume

261

DOI

10.1016/j.jastp.2024.106284

Abstract

The objective of this study is to evaluate the clouds seasonal occurrence characteristics, and to estimate their impact on solar radiation in Mbour, Senegal, West Africa. Here, we use datasets from various sources including: i) observations from the Clouds and Earth's Radiant Energy System satellite sensors, ii) in situ shortwave radiation measurement obtained from the Mbour station, and iii) the outgoing longwave radiation (OLR) obtained from the National Centers for Environmental Prediction reanalysis data. Results show a marked seasonality, associated with high spatial variation in terms of cloud occurrence over Senegal. The maximum cloud occurrences are observed during the wet summer season (June–October), whilst the minimum cloud occurrences are recorded during the long-dry season from November to May. During the monsoon season the cloud activity becomes more intense with a total cloud cover of about 80%, a cloud optical depth of around 7, and a high convective activity illustrated by a low OLR (below 240 W/m2). Likewise, across Senegal a strong north-south gradient of the cloud characteristics is observed. Based on quantitative comparison between cloud occurrence and radiation measurement, results show an important seasonal impact on available solar potential in Mbour. Conversely to the cloud occurrence, the maximum of both direct normal and global solar potentials is recorded during the dry season, coinciding with the period with clean sky. An investigation of the cloud influence on solar radiation on selected study cases indicates a decrease of 60% (80%) for the total (direct normal) radiation during the peak of the summer monsoon season.

Funding Sponsor

San José State University

Keywords

Clouds, Seasonal variation, Senegal, Solar potential, West Africa

Department

Meteorology and Climate Science

Share

COinS