Document Type
Article
Publication Date
January 1999
Publication Title
PATH Research Report
Keywords
Carpool, Demand Management, Urban Sprawl, Trip Distribution, Entropy Optimization
Disciplines
Industrial Engineering | Operations Research, Systems Engineering and Industrial Engineering | Systems Engineering
Abstract
Traffic congestion has been a pervasive problem in many urban areas of this country. This paper studies the potential of carpooling among unrelated partners (i.e., inter-household carpooling) for demand reduction during peak commute hours. Basic questions about this potential include the following. Can the current population density, origin-destination distribution, tolerable pick-up and drop-off delays, departure time distribution, and the tolerance for deviation from preferred departure time support a sizable carpooling population that can make a significant contribution to traffic demand reduction? Could the proportion of long trips that are likely candidates for carpooling (e.g., those long trips with same O-D) be so small that no significant traffic demand reduction could be expected from carpooling?The potential depends on many factors, some of which are more amenable to quantification than others. Our approach to assessing the potential is to separate such quantifiable factors from the rest, and then, based on these quantifiable factors, identify likely upper bounds for the potential. This paper focuses on a simplified urban sprawl in which the densities of workers and jobs are uniform over an infinitely large flat geographical area. For our numerical study, we use the job and worker data of the city of Los Angeles to approximate the worker/job density. An entropy optimization model that is equivalent to the gravity model is used for trip distribution. Under the assumptions made in the paper, carpooling among unrelated partners has little potential for demand reduction.
Recommended Citation
H.-S. Jacob Tsao and Da-Jie Lin. "Spatial and Temporal Factors in Estimating the Potential of Ride-sharing for Demand Reduction" PATH Research Report (1999).
Comments
This work was performed as part of the California PATH Program of the University of California, in cooperation with the State of California Business, Transportation, and Housing Agency, Department of Transportation; and the United States Department Transportation, Federal Highway Administration.The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California. This report does not constitute a standard, specification, or regulation.