Document Type

Article

Publication Date

October 2000

Publication Title

Journal of the Atmospheric Sciences

Volume

57

Issue Number

20

DOI

10.1175/1520-0469(2000)057<3426:TIOWAZ>2.0.CO;2

Disciplines

Atmospheric Sciences | Climate | Meteorology

Abstract

The effects of wave and zonal mean ozone heating on the evolution of the quasi-biennial oscillation (QBO) are examined using a two-dimensional mechanistic model of the equatorial stratosphere. The model atmosphere is governed by coupled equations for the zonal mean and (linear) wave fields of ozone, temperature, and wind, and is driven by specifying the amplitudes of a Kelvin wave and a Rossby–gravity wave at the lower boundary. Wave–mean flow interactions are accounted for in the model, but not wave–wave interactions.

A reference simulation (RS) of the QBO, in which ozone feedbacks are neglected, is carried out and the results compared with Upper Atmosphere Research Satellite observations. The RS is then compared with three model experiments, which examine separately and in combination the effects of wave ozone and zonal mean ozone feedbacks. Wave–ozone feedbacks alone increase the driving by the Kelvin and Rossby–gravity waves by up to 10%, producing stronger zonal wind shear zones and a stronger meridional circulation. Zonal mean–ozone feedbacks (ozone QBO) alone decrease the magnitude of the temperature QBO by up to 15%, which in turn affects the momentum deposition by the wave fields. Overall, the zonal mean–ozone feedbacks increase the magnitude of the meridional circulation by up to 30%. The combined effects of wave–ozone and ozone QBO feedbacks generally produce a larger response then either process alone. Moreover, these combined ozone feedbacks produce a temperature QBO amplitude that is up to 30% larger than simulations without the feedbacks. Correspondingly, significant changes are also observed in the zonal wind and ozone QBOs. When ozone feedbacks are included in the model, the Kelvin and Rossby–gravity wave amplitudes can be reduced by ∼10% and still produce a QBO similar to simulations without ozone.

Comments

This article originally appeared in Journal of the Atmospheric Sciences in Volume 57, Issue 20 and can be found online at this link.

© Copyright 2000 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyrights@ametsoc.org.

Share

COinS