Description
The main objectives of this study are to investigate the trends in primary pavement materials’ unit price over time and to develop statistical models and guidelines for using predictive unit prices of pavement materials instead of uniform unit prices in life cycle cost analysis (LCCA) for future maintenance and rehabilitation (M&R) projects. Various socio-economic data were collected for the past 20 years (1997–2018) in California, including oil price, population, government expenditure in transportation, vehicle registration, and other key variables, in order to identify factors affecting pavement materials’ unit price. Additionally, the unit price records of the popular pavement materials were categorized by project size (small, medium, large, and extra-large). The critical variables were chosen after identifying their correlations, and the future values of each variable were predicted through time-series analysis. Multiple regression models using selected socio-economic variables were developed to predict the future values of pavement materials’ unit price. A case study was used to compare the results between the uniform unit prices in the current LCCA procedures and the unit prices predicted in this study. In LCCA, long-term prediction involves uncertainties due to unexpected economic trends and industrial demand and supply conditions. Economic recessions and a global pandemic are examples of unexpected events which can have a significant influence on variations in material unit prices and project costs. Nevertheless, the data-driven scientific approach as described in this research reduces risk caused by such uncertainties and enables reasonable predictions for the future. The statistical models developed to predict the future unit prices of the pavement materials through this research can be implemented to enhance the current LCCA procedure and predict more realistic unit prices and project costs for the future M&R activities, thus promoting the most cost-effective alternative in LCCA.
Publication Date
12-2020
Publication Type
Report
Topic
Transportation Engineering
Digital Object Identifier
10.31979/mti.2020.1806
MTI Project
1806
Mineta Transportation Institute URL
https://transweb.sjsu.edu/research/1806-Predict-Material-Prices-Pavement-LCCA
Keywords
Life cycle cost analysis, Maintenance, Rehabilitation, Pavement materials, Unit costs
Disciplines
Statistical Models | Transportation
Recommended Citation
Changmo Kim, Ghazan Khan, Brent Nguyen, and Emily L. Hoang. "Development of a Statistical Model to Predict Materials’ Unit Prices for Future Maintenance and Rehabilitation in Highway Life Cycle Cost Analysis" Mineta Transportation Institute (2020). https://doi.org/10.31979/mti.2020.1806
Research Brief