Description

The transportation studies literature recognizes the relationship between accessibility and active travel. However, there is limited research on the specific impact of walking and cycling accessibility to multi-use paths on active travel behavior. Combined with the culture of automobile dependency in the US, this knowledge gap has been making it difficult for policy-makers to encourage walking and cycling mode choices, highlighting the need to promote a walking and cycling culture in cities. In this case, a clustering effect (“you bike, I bike”) can be used as leverage to initiate such a trend. This project contributes to the literature as one of the few published research projects that considers all typical categories of explanatory variables (individual and household socioeconomics, local built environment features, and travel and residential choice attitudes) as well as two new variables (accessibility to multi-use paths calculated by ArcGIS and a clustering effect represented by spatial autocorrelation) at two levels (level 1: binary choice of cycling/waking; level 2: cycling/walking time if yes at level 1) to better understand active travel demand. We use data from the 2012 Utah Travel Survey. At the first level, we use a spatial probit model to identify whether and why Salt Lake City residents walked or cycled. The second level is the development of a spatial autoregressive model for walkers and cyclists to examine what factors affect their travel time when using walking or cycling modes. The results from both levels, obtained while controlling for individual, attitudinal, and built-environment variables, show that accessibility to multi-use paths and a clustering effect (spatial autocorrelation) influence active travel behavior in different ways. Specifically, a cyclist is likely to cycle more when seeing more cyclists around. These findings provide analytical evidence to decision-makers for efficiently evaluating and deciding between plans and policies to enhance active transportation based on the two modeling approaches to assessing travel behavior described above.

Publication Date

6-2021

Publication Type

Report

Topic

Active Transportation

Digital Object Identifier

10.31979/mti.2021.2011

MTI Project

2011

Keywords

Accessibility, Clustering effect, Walking, Cycling, Spatial statistics

Disciplines

Transportation | Urban Studies and Planning

Share

COinS