Document Type
Article
Publication Date
July 2019
Publication Title
Nature Communications
Volume
10
DOI
10.1038/s41467-019-11089-w
Disciplines
Materials Science and Engineering
Abstract
The unique properties of ferroelectric materials enable a plethora of applications, which are hindered by the phenomenon known as ferroelectric fatigue that leads to the degradation of ferroelectric properties with polarization cycling. Multiple microscopic models explaining fatigue have been suggested; however, the chemical origins remain poorly understood. Here, we utilize multimodal chemical imaging that combines atomic force microscopy with time-of-flight secondary mass spectrometry to explore the chemical phenomena associated with fatigue in PbZr0.2Ti0.8O3 (PZT) thin films. Investigations reveal that the degradation of ferroelectric properties is correlated with a local chemical change and migration of electrode ions into the PZT structure. Density functional theory simulations support the experimental results and demonstrate stable doping of the thin surface PZT layer with copper ions, leading to a decrease in the spontaneous polarization. Overall, the performed research allows for the observation and understanding of the chemical phenomena associated with polarization cycling and their effects on ferroelectric functionality.
Recommended Citation
Anton Ievlev, Santosh KC, Rama Vasudevan, Yunseok Kim, Xiaoli Lu, Marin Alexe, Valentino Cooper, Sergei Kalinin, and Olga Ovchinnikova. "Non-conventional Mechanism of Ferroelectric Fatigue via Cation Migration" Nature Communications (2019). https://doi.org/10.1038/s41467-019-11089-w
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Comments
SJSU users: Use the following link to login and access the article via SJSU databases.This article was published in Nature Communications, volume 10, 2019, and can also be found online here. Copyright © 2019, The Authors