Publication Date
Spring 2023
Degree Type
Master's Project
Degree Name
Master of Science (MS)
Department
Computer Science
First Advisor
Nada Attar
Second Advisor
Wendy Lee
Third Advisor
William Anderopoulos
Keywords
Convolutional Neural Network, Data Augmentation, Deep Learning, Facial expression recognition, Image Processing, Normalization
Abstract
Facial expression recognition (FER) has been a challenging task in computer vision for decades. With recent advancements in deep learning, convolutional neural networks (CNNs) have shown promising results in this field. However, the accuracy of FER using CNNs heavily relies on the quality of the input images and the size of the dataset. Moreover, even in pictures of the same person with the same expression, brightness, backdrop, and stance might change. These variations are emphasized when comparing pictures of individuals with varying ethnic backgrounds and facial features, which makes it challenging for deep-learning models to classify. In this paper, we provide a simple yet efficient way for recognizing facial expressions that combines a CNN with certain image pre-processing techniques. We conducted our experiments on a combination of MUG, JAFFE, and CK+ datasets. To improve the performance of CNN, we experimented with various image pre-processing techniques such as face detection and cropping, image sharpening using Unsharp Mask, and normalization techniques like Global Contrast Normalization, Histogram Equalization, and Adaptive Histogram Equalization. Furthermore, we also examined data augmentation techniques such as image translations and adding noise to images to enhance performance of the deep learning model. Our custom CNN-based FER model achieved a maximum average accuracy of 93.3% (6 classes) and 91% (7 classes) after cross-validation. Our experimental results show that our proposed method can effectively enhance the accuracy of facial expression recognition
Recommended Citation
Deokar, Sourabh, "Enhancing Facial Emotion Recognition Using Image Processing with CNN" (2023). Master's Projects. 1254.
DOI: https://doi.org/10.31979/etd.6ud2-d29c
https://scholarworks.sjsu.edu/etd_projects/1254
Included in
Artificial Intelligence and Robotics Commons, Graphics and Human Computer Interfaces Commons