Publication Date
Fall 2023
Degree Type
Master's Project
Degree Name
Master of Science in Computer Science (MSCS)
Department
Computer Science
First Advisor
Robert Chun
Second Advisor
William Andreopoulos
Third Advisor
Nikhila Saini
Keywords
machine learning, neural network, PM 2.5, prediction model, regression model
Abstract
Air pollution has emerged as a substantial concern, especially in developing countries worldwide. An important aspect of this issue is the presence of PM2.5. Air pollutants with a diameter of 2.5 or less micrometers are known as PM2.5. Due to their size, these particles are a serious health risk and can quickly infiltrate the lungs, leading to a variety of health problems. Due to growing concerns about air pollution, technology like automatic air quality measurement can offer beneficial assistance for both personal and business decisions. This research suggests an ensemble machine learning model that can efficiently replace the standard air quality estimation techniques, which need several instruments and setup and have large financial expenditures for equipment acquisition and maintenance.
Recommended Citation
Devaraneni, Srujay Rao, "Estimating Air Pollution Levels Using Machine Learning" (2023). Master's Projects. 1334.
DOI: https://doi.org/10.31979/etd.h96s-w6xd
https://scholarworks.sjsu.edu/etd_projects/1334