Publication Date

Fall 2013

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Biomedical, Chemical & Materials Engineering

Advisor

Benjamin Hawkins

Subject Areas

Biomedical engineering

Abstract

This research examined if the infusion of silver nanoparticles into a 2-octyl cyanoacrylate tissue adhesive alters the antibacterial effectiveness and mechanical properties of the adhesive. Silver nanoparticle size and concentration combinations were varied to determine the effects of these factors. Uniform distribution of the silver nanoparticles was achieved before proceeding to testing. Antibacterial effectiveness of the composite adhesive was determined via the Kirby-Bauer disk diffusion susceptibility test and by CFU counting. Doping the adhesive with silver nanoparticles resulted in an order of magnitude reduction in bacterial growth. The greatest antibacterial effect came from imbuing 10 μg/mL of 4 nm silver nanoparticles into the tissue adhesive. Despite the noticeable reduction of bacterial growth for the doped adhesives, the difference among the varying silver nanoparticle size and concentration combinations was minimal. The breaking strength of the adhesive increased when silver nanoparticles were added. The adhesive strength of the composite adhesive attached to an incised porcine sclera was also greater than the unaltered adhesive. The greatest breaking load and adhesive force was the 10 μg/mL of 10 nm silver nanoparticle-doped adhesive. The increased mechanical strength of the doped adhesive expands the possible applications of treatment on different areas of the body.

Share

COinS