Publication Date

Spring 2015

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Mechanical Engineering

Advisor

Jinny Rhee

Keywords

ABL Simulation, Spire, Wind Tunnel

Subject Areas

Mechanical engineering; Meteorology

Abstract

There has been much success in atmospheric boundary layer simulation with medium sized closed-circuit wind tunnels with test section dimensions of approximately 1 x 1 m. However, smaller, blower-type wind tunnels are more common in university laboratories due to the lower cost and smaller space requirements. A small size, open flow wind tunnel with a 1 x 1 foot test section was modified to simulate the atmospheric boundary layer with a combination of upstream spires and cubic roughness elements. The primitive spire geometry detailed in the literature was found to yield poor agreement with the power law velocity profile of interest, and a novel iterative algorithm was developed to produce nonlinear spire geometry. The geometry generated by the algorithm was tested in the wind tunnel and found to simulate the desired velocity profile based on a Hellman exponent of 0.20 with a high degree of agreement, having a maximum velocity error of 4%. This confirmed the suitability of small-sized wind tunnels for simulating the atmospheric boundary layer.

Share

COinS