Publication Date

Fall 2022

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Computer Engineering

Advisor

Nima Karimian

Subject Areas

Computer engineering

Abstract

Many modern day applications can be solved with the usage of machine learning, which involves training a computer to learn on large amounts of data without direct programmer guidance. Conventional computers typically use normal general purpose central processing units, though more specialized tasks may take advantage of more parallel hardware such as graphics processing units. In the pursuit of increased performance to facilitate increasingly more complex machine learning models, researchers in both academia and industry look towards field-programmable gate arrays and application specific integrated circuits for their needs. Various implementations, both theoretical and practical, exist across a wide variety of designs. A custom design, using systolic arrays and built on the existing RISC-V Instruction Set Architecture, will be used to accelerate matrix calculations, with example performance on the MNIST dataset measured.

Share

COinS