Document Type
Article
Publication Date
January 2007
Publication Title
Journal of Geophysical Research: Atmospheres
Volume
112
Issue Number
D2
DOI
10.1029/2006JD007357
Disciplines
Atmospheric Sciences | Climate | Meteorology
Abstract
[1] An ozone-modified refractive index (OMRI) is derived for vertically propagating planetary waves using a mechanistic model that couples quasigeostrophic potential vorticity and ozone volume mixing ratio. The OMRI clarifies how wave-induced heating due to ozone photochemistry, ozone transport, and Newtonian cooling (NC) combine to affect wave propagation, attenuation, and drag on the zonal mean flow. In the photochemically controlled upper stratosphere, the wave-induced ozone heating (OH) always augments the NC, whereas in the dynamically controlled lower stratosphere, the wave-induced OH may augment or reduce the NC depending on the detailed nature of the wave vertical structure and zonal mean ozone gradients. For a basic state representative of Northern Hemisphere winter, the wave-induced OH can increase the planetary wave drag by more than a factor of two in the photochemically controlled upper stratosphere and decrease it by as much as 25% in the dynamically controlled lower stratosphere. Because the zonal mean ozone distribution appears explicitly in the OMRI, the OMRI can be used as a tool for understanding how changes in stratospheric ozone due to solar variability and chemical depletion affect stratosphere-troposphere communication.
Recommended Citation
Terrence R. Nathan and Eugene C. Cordero. "An Ozone-Modified Refractive Index for Vertically Propagating Planetary Waves" Journal of Geophysical Research: Atmospheres (2007). https://doi.org/10.1029/2006JD007357
Included in
Atmospheric Sciences Commons, Climate Commons, Meteorology Commons
Comments
This article originally appeared in Journal of Geophysical Research : Atmospheres in Volume 112, Issue D2 and can be found online at this link.