Document Type
Article
Publication Date
12-1-2015
Publication Title
Physical Review Letters
Volume
115
Issue Number
24
DOI
10.1103/PhysRevLett.115.240402
Disciplines
Physical Sciences and Mathematics | Physics
Abstract
Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Néel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.
Recommended Citation
Ehsan Khatami, Thereza Paiva, Shuxiang Yang, Valéry Rousseau, Mark Jarrell, Juana Moreno, Randall Hulet, and Richard Scalettar. "Cooling Atomic Gases With Disorder" Physical Review Letters (2015). https://doi.org/10.1103/PhysRevLett.115.240402
Comments
This article originally appeared in Physical Review Letters, volume 115, issue 24, 2015, published by the American Physical Society. ©2015 American Physical Society. The article can also be found online at this link. SJSU users: use the following link to login and access the article via SJSU databases.