Document Type

Article

Publication Date

September 2016

Publication Title

Scientific Reports

Volume

6

DOI

10.1038/srep33562

ISSN

2045-2322

Disciplines

Materials Science and Engineering

Abstract

In an electronic device based on two dimensional (2D) transitional metal dichalcogenides (TMDs), finding a low resistance metal contact is critical in order to achieve the desired performance. However, due to the unusual Fermi level pinning in metal/2D TMD interface, the performance is limited. Here, we investigate the electronic properties of TMDs and transition metal oxide (TMO) interfaces (MoS2/MoO3) using density functional theory (DFT). Our results demonstrate that, due to the large work function of MoO3 and the relative band alignment with MoS2, together with small energy gap, the MoS2/MoO3 interface is a good candidate for a tunnel field effect (TFET)-type device. Moreover, if the interface is not stoichiometric because of the presence of oxygen vacancies in MoO3, the heterostructure is more suitable for p-type (hole) contacts, exhibiting an Ohmic electrical behavior as experimentally demonstrated for different TMO/TMD interfaces. Our results reveal that the defect state induced by an oxygen vacancy in the MoO3 aligns with the valance band of MoS2, showing an insignificant impact on the band gap of the TMD. This result highlights the role of oxygen vacancies in oxides on facilitating appropriate contacts at the MoS2 and MoOx (x < 3) interface, which consistently explains the available experimental observations.

Comments

SJSU users: Use the following link to login and access the article via SJSU databases.This article was published in Scientific Reports, volume 6, 2016, and can also be found online here.Copyright © 2016, The Authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS